19^2+31^2=c^2

Simple and best practice solution for 19^2+31^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 19^2+31^2=c^2 equation:



19^2+31^2=c^2
We move all terms to the left:
19^2+31^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+1322=0
a = -1; b = 0; c = +1322;
Δ = b2-4ac
Δ = 02-4·(-1)·1322
Δ = 5288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5288}=\sqrt{4*1322}=\sqrt{4}*\sqrt{1322}=2\sqrt{1322}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1322}}{2*-1}=\frac{0-2\sqrt{1322}}{-2} =-\frac{2\sqrt{1322}}{-2} =-\frac{\sqrt{1322}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1322}}{2*-1}=\frac{0+2\sqrt{1322}}{-2} =\frac{2\sqrt{1322}}{-2} =\frac{\sqrt{1322}}{-1} $

See similar equations:

| 29+p=131 | | 3x2–8x=48 | | 5a+8+5a=88a | | -7(p-6)=175 | | -4(x+3)=4(–x-1) | | 175-75m+48250=50750-150m | | 2.17x=26.18 | | 175-75m+48250=50750-150 | | 2–5x=7x-12 | | c-45=72 | | (9x(-14)=-144 | | 6x+1=3(2x=4) | | (.)x(-8)=140 | | 6*5n=10 | | 12-5x=10-2x | | (2x-8)=(9x-10) | | r+144=180 | | R•r+144=180 | | g-140=210 | | 3x+12=-2x+23 | | 13x+2x=172 | | 4.8g+9=1.8g+21 | | 56+b=127 | | 3x+6x+9x=648 | | 3(3b+2)=-38 | | 1/2x-12=x | | 3a^2+4+3a+2=2a^2+8a | | -3(y-4)=-9y+48 | | x/5−8=15 | | 4(9-7n)+19=113 | | 4x+12x–6=4(4x+7) | | d+56=168 |

Equations solver categories